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Abstract

We study the wrapping ofN -type IIB Dp-branes on a compact Riemann surfaceΣ in genusg > 1
by means of the Sen–Witten construction, as a superposition ofN ′-type IIB Dp′-brane/antibrane
pairs, withp′ > p. A background Neveu–Schwarz fieldB deforms the commutativeC�-algebra of
functions onΣ to a non-commutativeC�-algebra. Our construction provides an explicit example
of theN ′ → ∞ limit advocated by Bouwknegt-Mathai and Witten in order to deal with twisted
K-theory. We provide the necessary elements to formulate M(atrix) theory on this newC�-algebra,
by explicitly constructing a family of projectiveC�-modules admitting constant-curvature con-
nections. This allows us to define theg > 1 analogue of the BPS spectrum of states ing = 1, by
means of Donaldson’s formulation of the Narasimhan–Seshadri theorem. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

1.1. Setting

The fact that D-branes carry vector bundles has allowed to interpret D-brane charges and
fields as classes in the K-theory of space–time, rather than as integer cohomology classes
[1–9]. This identification has led to a better understanding of the spectrum of D-branes,
in particular of stable, non-supersymmetric D-branes. Such non-BPS branes can often be
understood as bound states of a brane–antibrane system with tachyon condensation[10].
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It has been proposed[6,11] that the K-theory analysis of a superposition ofN ′-type IIB
Dp′-brane/antibrane pairs is best performed in the limitN ′ → ∞. This limit allows for
the possibility of considering a non-torsion class for the field strengthH = dB of the
Neveu–Schwarz fieldB.

Along a related line, M(atrix) theory[12,13]as a model for M-theory has been compact-
ified toroidally in[14]. By turning on a backgroundB-field one can deform this compact-
ification to a compactification on the non-commutative torus[15,16]. The effective gauge
theory on the D-branes then becomes non-commutative[17].

1.2. Aim

In this paper, we combine the three lines named above. The aim is to provide a physical
interpretation for theC�-algebra constructed abstractly in[18]. The strategy is as follows.

We first wrapN -type IIB Dp-branes on a manifoldΣ × Y , whereΣ is compact Rie-
mann surface with genusg > 1 andY is an auxiliary space–time manifold to be specified
presently. (With more generality, one could consider a nontrivial bundle overΣ instead of
Σ × Y .) Following[10], each one of theN wrapped Dp-branes can be viewed as a super-
position ofN ′ Dp′-brane/antibrane pairs, with an odd value ofp′ > p. When wrapping a
single-type IIB Dp-brane on a manifold of codimension 2k, a minimum ofN ′ = 2k−1-type
IIB Dp′-brane/antibrane pairs are needed[2]. Eventually passing to the limitN → ∞ will
also enforceN ′ → ∞ and bring us into the stable range of K-theory. Simultaneously we
turn on a backgroundB-field acrossΣ .

On the other hand, this system possesses a dual description in type IIA string theory
or, more precisely, in 11-dimensional M-theory as described by M(atrix) theory. In this
dual setting, a Dp-brane is compactified onp copies ofS1, next T-dualised along allp
circles, and finally decompactified into a type IIA D0-brane. The limitN → ∞ required
by M(atrix) theory has a natural counterpart in the dual-type IIB description: it arises from
the requirement of allowing for the possibility that the background field strengthH be a
non-torsion class. Our model provides an explicit realisation, in string theory terms, of the
twisted K-theory described abstractly by Bouwknegt and Mathai[11], and advocated by
Witten [6] in a similar K-theoretic setting.

From this M(atrix) theory, description of the wrapped Dp-branes, the connection with
non-commutative geometry[19] is now immediate: the backgroundB-field deforms the
commutativeC�-algebra of functions onΣ to a non-commutativeC�-algebra.

1.3. Outline

This paper is organised as follows. As a preparation forg > 1, Section 2reviews the
non-commutative torus from the standpoint of the Heisenberg algebra. The latter can be in-
terpreted as acentral-curvature conditionon a projective module over the non-commutative
torus[20,21]. (Centralmeans that as an endomorphism of the projective module, the cur-
vature is proportional to the identity. By abuse of terminology, we will callEq. (16)below
aconstant-curvature condition, rather than a central-curvature condition.)

The constant-curvature condition has a natural extension tog > 1 in the theory of stable,
holomorphic vector bundles over a Riemann surfaceΣ , together with Donaldson’s version
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[22] of the Narasimhan–Seshadri theorem[23]. The latter provides the right mathematical
description of the twisted gauge bundles arising on the stack of coincident branes required by
the Sen–Witten construction of non-BPS branes. Indeed such bundles can be characterised
as admitting a constant-curvature connection. These points are summarised inSection 3.

Section 4presents this newC�-algebra. We recall from[18] the definition of its generators
and of the trace required to write down the M(atrix) theory action, and explicitly construct
the corresponding projectiveC�-modules.

Wrapping a Dp-brane on a closed,(p + 1)-dimensional submanifold of space–time is
possible only when the condition of cancellation of global worldsheet anomalies is satisfied
[2,24–26]. This point is dealt with inSection 5. In particular, this analysis fixes the dimen-
sionality of the Dp-branes to bep ≥ 3; this bound will be later refined by cohomological
arguments inSection 7.4. Section 6presents, following[11,26], the necessary formalism
about the background field strength, oriented towards the limitN → ∞ that will be taken
in Section 7.

In Section 7, we first describe the setup in type IIB string theory terms. Next we pass,
through a duality transformation, to an equivalent M(atrix) theory description of theN

Dp-branes wrapped onΣ . AsN → ∞, so too must the ’t Hooft magnetic fluxM go to infin-
ity, in a certain sense to be specified presently. We will analyse thisdouble scaling limitin de-
tail; ourC�-algebra of[18] is precisely the double scaling limit of the Narasimhan–Seshadri
representations of the Fuchsian groupΓ uniformising the Riemann surfaceΣ in g > 1.

In Section 8, we use Donaldson’s theorem to identify theg > 1 analogues of BPS states
on the non-commutative torus, by explicitly identifying constant-curvature connections
on the projectiveC�-modules constructed inSection 4. Finally, Section 9presents some
conclusions and perspectives.

2. BPS spectra ing=1 from the Stone–von Neumann theorem

2.1. The constant-curvature condition

Let us set the fermions of the M(atrix) theory action to zero, and consider a state deter-
mined by the condition that a connection on a projective module over the non-commutative
torusT 2

θ have constant field strength

Fjk = ωjkI , (1)

i.e. the curvature must be proportional to the identity endomorphism. Above,ωjk is a constant
2-form over the Lie algebra of derivations ofT 2

θ . In the presence of supersymmetry such field
configurations give rise to BPS states[15,20], with an amount of preserved supersymmetry
given by the dimension of the space of spinorsε, ε′ that solve the equation

εΓ jkFjk + ε′I = 0, (2)

whereΓ jk = [Γ j , Γ k] is a commutator of Dirac matrices. In the absence of supersymmetry,
as will be the case ing > 1, condition(1) is the closest analogue ofEq. (2)defining a BPS
state.
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In [21], it has been argued that the complete set of equations specifying a projective
module over the torusT 2

θ , together with a constant-curvature connection on it, is given by

UjUk = e2π iθjkUkUj , [∇j ,Uk] = δjkUk, [∇j ,∇k] = iFjkI , (3)

wherej, k = 1,2. These equations can be solved by first representing the Heisenberg
algebra [∇j ,∇k] = iFjkI , through the Stone–von Neumann theorem, on the Hilbert space
L2(R). The hermiticity of this representation ensures the unitarity of the generators

Uj = exp(iF−1
jk ∇k). (4)

Next we tensor the latter with an(N×N)-dimensional representation of ’t Hooft’s matrices
uj

ujuk = e2π iMjk/Nukuj , Mjk ∈ Z, (5)

acting on the spaceCN . The complete projective module overT 2
θ is given by

ENM = L2(R)⊗ CN(M), (6)

where the notationCN(M) makes reference to the magnetic fluxM = M12. The total gener-
ators

Uj ⊗ uj , j = 1,2 (7)

satisfy the algebra ofT 2
θ with a total deformation parameter

θjk = − 1

2π
Fjk + 1

N
Mjk. (8)

The fact thatFjkI is a c-number allows one to compute the deformation parameter by a
simple application of the Baker–Campbell–Hausdorff formula.

2.2. Moduli space of constant-curvature connections

The notion of a moduli spaceM(g=1) of constant-curvature connections ing = 1 appears
naturally in the above picture[21].M(g=1) is the space of solutions to the first two equations
of (3), modulo gauge transformations. Modules possessing different Chern numbers are
treated simultaneously in this approach. Fixing a Chern number corresponds to choosing a
connected component of the total moduli space of solutions toEq. (3).

The residual gauge transformations preserving the constant-curvature condition(3) cor-
respond toN × N unitary transformations acting on theCN factor of the moduleENM.
Hence the moduli space of constant-curvature connections on a module with fixed integer
values ofN andMjk can be described as a space of inequivalent representations of the
matrix algebra(5). The latter in fact admits a continuum of inequivalent representations. In
order to identify it, we first consider the commutative torusT̂ 2 that is dual to the original
commutative torusT 2. Then the space of irreducible representations of(5) is described
by means of two complex numbersλi with unit modulus, modulo a certain residual gauge
symmetry. LetEΛ, Λ = (λ1, λ2), denote the corresponding irreducible representations,
and assume thatCN decomposes asCN = ⊕rl=1EΛl . The residual gauge symmetry acts by
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permutation on ther summands as the permutation groupSr , and the moduli spaceM(g=1)

is T̂ 2/Sr .

3. The Narasimhan–Seshadri theorem

3.1. Statement of the theorem

LetΓ denote the Fuchsian group uniformising a compact Riemann surfaceΣ with genus
g > 1 and without boundary. We now summarise some facts about projective, unitary
representations ofΓ and the theory of holomorphic vector bundles overΣ [23] (for more
extensive treatments see[27,28]).

LetE → Σ be a holomorphic vector bundle overΣ of rankN and degree, i.e. first Chern
class,M. The bundleE is calledstableif the ratio

µ(E) = M

N
(9)

satisfies the inequalityµ(E ′) < µ(E) for every proper holomorphic sub-bundleE ′ ⊂ E .
We may take−N < M ≤ 0, as this may always be arranged by tensor multiplication with
a line bundle without losing stability.

Denote byγj , j = 1, . . . ,2g, the generators ofΓ . We have

g∏
j=1

(γ2j−1γ2j γ
−1
2j−1γ

−1
2j ) = I . (10)

For the purposes of this section we will temporarily assume thatΓ contains a unique
primitive elliptic elementγ0 of orderN , i.e.γN0 = I , with fixed pointz0 ∈ H that projects
to x0 ∈ Σ . Now let ρ : Γ → U(N) be an irreducible unitary representation. It is said
admissibleif

ρ(γ0) = e−2π iM/N I . (11)

Putting the elliptic element on the right-hand side, and denotingρ(γj ) byuj , an admissible
representation satisfies

g∏
j=1

(u2j−1u2j u
−1
2j−1u

−1
2j ) = e2π iM/N I . (12)

Theuj are theg > 1 generalisation of ’t Hooft’s matrices(5).
On the trivial bundleH × CN → H there is an action ofΓ : (z, v) �→ (γ z, ρ(γ )v). This

defines the quotient

H × CN

Γ
→ H
Γ

∼= Σ. (13)

Any admissible representation determines a holomorphic vector bundleEρ → Σ of rank
N and degreeM. WhenM = 0, Eρ is simply the quotient bundle(13). The Narasimhan–
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Seshadri theorem now states that a holomorphic vector bundleE → Σ of rankN and
degreeM is stable if and only if it is isomorphic to a bundleEρ , whereρ is an admissible
representation ofΓ . Moreover, the bundlesEρ1 andEρ2 are isomorphic if and only if the
representationsρ1 andρ2 are equivalent.

Next consider the adjoint representation ofΓ on EndCN ,

Ad ρ(γ )Z = ρ(γ )Zρ−1(γ ), (14)

whereZ ∈ EndCN is understood as anN × N matrix. Let us also consider the trivial
bundleH ×EndCN → H. There is an action ofΓ : (z, Z) �→ (γ z,Ad ρ(γ )Z) that defines
the quotient bundle

H × EndCN

Γ
→ H
Γ

∼= Σ. (15)

WhenE is stable, the bundle of endomorphisms EndE → Σ is isomorphic to the quotient
bundle(15).

3.2. Donaldson’s approach to stability of vector bundles

A differential-geometric approach to stability has been given by Donaldson[22]. Fix a
Hermitian metric onΣ , e.g. the Poincaré metric, normalised so that the area ofΣ equals 1.
Let us denote byω its associated(1,1)-form. Then a holomorphic vector bundle is stable
if and only if it admits a metric connection∇D with constant-curvature

FD = −2π iµ(E)ωI , (16)

and such a connection∇D is unique. As done for BPS states ing = 1 [20], in Section 8we
will use the constant-curvature condition(16) to characterise BPS-like states ing > 1.

4. Infinite-dimensional projective representations of the Fuchsian groupΓ

In order to study M(atrix) theory ing > 1, the following elements are needed: a knowledge
of theC�-algebra, a trace and the projectiveC�-modules.

4.1. Definition of theC�-algebraC�(Γ, θ)

Let us recall from[18] the construction of the operatorsUj = ρb(γj ) that provide a
projectively unitary representationρb of the Fuchsian groupΓ . We first pick a fundamental
domainFz for the Fuchsian groupΓ uniformisingΣ , with basepointz ∈ H, in order to
have a tessellationT (H) of H. On the Hilbert spaceL2(H) one defines, for every value of
the Fuchsian indexj = 1, . . . ,2g,

U (z)j = exp

(
ib

∫ γj z

z

A

) 1∏
α=−1

exp[λ(j)α (Lα + L̄α)]. (17)
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Above, theLα, L̄α are the standard sl2(R) differential generatorszα+1∂z, z̄α+1∂z̄, A =
d Re(z)/Im(z) is a gauge field onH, theλ(j)α are a set of numerical parameters specifying
a complex structure onΣ , andb is an arbitrary real parameter. One can prove that theU (z)j
are unitary and satisfy

g∏
j=1

(U2j−1U2jU
−1
2j−1U

−1
2j ) = e−2π iθb I (18)

with θb a real parameter that is independent of the basepointz and is given by

θb = bχ(Σ) = b(2 − 2g). (19)

Consider the associative algebra with involution whose unitary generators are theU (z)j of

Eq. (18). It admits a faithful unitary representation onL2(H). Taking the norm closure of
this image[19], this algebra becomes aC�-algebra that we denote byC�(Γ, θ).

4.2. Definition of the trace

A trace can be defined by means of the following equivalent presentation ofC�(Γ, θ)

[18]. Eachγ �= I in Γ can be univocally expressed as a positive power of a primitive
elementp̃ ∈ Γ , primitivemeaning that it is not a positive power of any other element inΓ

[29]. LetVp̃ be the representative of̃p. Any V ∈ C� can be written as

V =
∑

p̃∈{prim}

∞∑
n=0

c
(p̃)
n V

n
p̃ + c0I (20)

for certain coefficientsc(p̃)n , c0. We now define a trace as

tr V = c0. (21)

4.3. Construction of projectiveC�(Γ, θ)-modulesENM

The Hilbert spaceL2(H) becomes a rightC�(Γ, θ)-module under right multiplication
of ξ ∈ L2(H) with theU (z)j . A C�(Γ, θ)-valued inner product〈, 〉 on this module can be
defined by summing over the Fuchsian indices, and over the verticesz ∈ T (H):

〈ξ, η〉 =
∑
z∈T (H)

2g∑
j=1

(ξ, ηU (z)
†

j )U (z)j , ξ, η ∈ L2(H). (22)

In Eq. (22), (, ) denotes the Hermitian product onL2(H) constructed with respect to
the Poincaré metric onH. Next we tensor the differential operatorsU (z)j with a set of

Narasimhan–Seshadri matricesuj . A projectiveC�(Γ, θ)-moduleENM is defined as the
tensor product ofL2(H) times the Narasimhan–Seshadri representation spaceCN(M) with
degreeM:

ENM = L2(H)⊗ CN(M). (23)
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The total generators onENM areU (z)j ⊗ uj , with the matrix part contributing a piece

〈ξN , ηN 〉N =
2g∑
j=1

(ξN , ηNu
†
j )uj , ξN , ηN ∈ CN (24)

to the scalar product onENM. In Eq. (24), (, ) denotes the standard Hermitian product on
CN . The total deformation parameter for the generatorsU (z)j ⊗ uj is then

θtot = θb − M

N
. (25)

5. The anomaly-cancellation condition

In type IIB superstring theory on a space–timeX, consider wrapping a Dp-brane on
a closed,(p + 1)-dimensional submanifoldQ ⊂ X. The analysis of global worldsheet
anomalies for open superstrings attached to Dp-branes has been performed in[2,25,26].
Let us briefly summarise it.

In the presence of a background Neveu–Schwarz 2-formB, a single Dp-brane can be
wrapped on a submanifoldQ ⊂ X if and only if the normal bundleN of Q satisfies the
condition of cancellation of global anomalies for open superstrings ending onQ:

β2(w2(N )) = [H ]Q. (26)

Here [H ] is the integer cohomology class whose de Rham representative isH = dB, [H ]Q
denotes its restriction toQ, andβ2(w2(N )) is the image of the second Stiefel–Whitney class
w2(N ) ∈ H 2(Q,Z2) under the Bockstein homomorphismβ2 : H 2(Q,Z2) → H 3(Q,Z)
induced by the short exact sequence

0 → Z → Z → Z2 → 0. (27)

Above, the second arrow is multiplication by 2, while the third arrow is reduction
modulo 2.

The wrapping ofN Dp-branes on a submanifoldQ is governed by a generalisation
of Eq. (26) that we describe next. When [H ]Q = 0, theN Dp-branes carry anU(N)
principal bundle while, for [H ]Q �= 0, the Dp-branes carry a principalSU(N)/ZN bundle
that cannot be lifted to aU(N) bundle. Now the ’t Hooft magnetic 2-form is a cohomology
class [f ] ∈ H 2(Q,ZN). Consider the image of [f ] under the Bockstein homomorphism
βN : H 2(Q,ZN)→ H 3(Q,Z) induced by the short exact sequence

0 → Z → Z → ZN → 0, (28)

where the second arrow is multiplication byN , while the third arrow is reduction moduloN .
The imageβN([f ]) ∈ H 3(Q,Z)measures the obstruction to lifting anSU(N)/ZN bundle
to aU(N) bundle. It turns out that global worldsheet anomalies for open superstrings ending
on the Dp-branes cancel if and only if

βN([f ])+ β2(w2(N )) = [H ]Q. (29)

For the above condition to be nonempty it is required thatp ≥ 3.
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6. The background field strength

6.1. Local description of a twisted bundle

An SU(N)/ZN bundle withoutU(N) structure has the following description in terms
of transition functions. Take a good covering ofX by open setsWi , and denote bysu(N)
the Lie algebra ofSU(N)/ZN . A vector bundle associated with the principalSU(N)/ZN
bundle has sectionsfi : Wi → su(N). Transition functionsgij : Wi ∩ Wj → U(N) are
defined on double overlaps such that

fi = gijfjg
−1
ij = gijfjgji , (30)

while on triple overlapsWi ∩Wj ∩Wk the consistency condition

gijgjkgki = hijk (31)

must be satisfied. Above,hijk is anN th root of unity obeying the cocycle relation

hijkhikl = hjklhijl (32)

on quadruple overlaps. From here

ln hijk + ln hikl − ln hjkl − ln hijl = 2π iκijkl , (33)

where κijkl defines an elementκ ∈ H 3(X,Z) which is the obstruction to lifting the
SU(N)/ZN bundle to aU(N) bundle.

Therefore, in the presence of [H ] �= 0, gauge bundles on the branes are described by
transition functions that obeyEq. (31). The direct sum of two such twisted bundles obeys
the same condition. Under the usual equivalence relation of K-theory, equivalence classes
of twisted bundles define the twisted K-theory ofX, denotedK[H ](X) [2].

6.2. The Brauer group

The background field strengthH determines a class in thěCech cohomology group
H 3(X,Z) [30]. The latter decomposes as

H 3(X,Z) = Z ⊕ · · · ⊕ Z ⊕ Zq1 ⊕ · · · ⊕ Zqs . (34)

The Zq pieces are calledtorsion subgroups. Torsion classes determine a subgroup of
H 3(X,Z), called the Brauer group ofX and denoted Br(X). Next we give two differ-
ent descriptions of the latter. One is in terms of finite-dimensional Azumaya algebras over
X, the other one is throughK-bundles with structure group Aut(K). The link between these
two descriptions of Br(X) is explained in[11].

6.3. Azumaya algebras overX

Let MN(C) denote the algebra of complexN × N matrices. Its automorphism group
Aut(MN(C)) is PU(N) = SU(N)/ZN , wherePU(N) = U(N)/U(1) denotes the projec-
tive unitary group onCN .
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An Azumaya algebra overX is a fibre bundle overX, whose typical fibre is the algebra
MN(C). Sectionsfi areMN(C)-valued and transition functionsgij arePU(N)-valued, in
such a way thatEqs. (30)–(33)are satisfied.

For any torsion class [H ] ∈ H 3(X,Z) there is a unique (equivalence class of) Azumaya
algebras and the corresponding twisted K-theory,K[H ](X) [11,26].

6.4. K-bundles overX

In theC�-norm topology, the limit[31]

lim
N→∞

MN(C) = K (35)

defines theC�-algebraK of compact operators on an infinite-dimensional, separable
Hilbert spaceH. LetU(H) denote the group of unitary operators onH, and letPU(H) =
U(H)/U(1) be the projective unitary group onH. By the same token we can set

lim
N→∞

SU(N)

ZN
= PU(H). (36)

Furthermore, it holds that Aut(K) = PU(H).
Let us consider a locally trivial bundleE overX with fibreK and structure group Aut(K).

Such a bundle is also determined byEqs. (30)–(33), where now the typical fibre is the algebra
K, hence sectionsfi areK-valued and transition functionsgij arePU(H)-valued[11].

6.5. H 3(X,Z) as parameter space forK-bundles

Isomorphism classes of locally trivial bundlesE overX with fibreK and structure group
Aut(K) are parameterised byH 3(X,Z). With every torsion classin H 3(X,Z) there is
associated an isomorphism class ofprojectively flatbundlesE with fibreK and structure
group Aut(K) [11]. Such bundles are given by a representation ofπ1(X) into Aut(K) [27].

The cohomology class inH 3(X,Z) corresponding to a bundleE with fibreKand structure
group Aut(K) is called theDixmier–Douady invariantof E ; it is denotedδ(E) [32]. In
terms of transition functions,δ(E) equals the cohomology classκ given inEq. (33), with
the obvious replacements.

7. Wrapping D-branes on ag >1 Riemann surface

7.1. The type IIB description

In what follows we takeQ to be a manifold of the formΣ×Y , for some (as yet) unspecified
manifoldY . We want to wrapN coincident type IIB Dp-branes onQ. Forgetting about the
manifoldY for the moment, we will speak ofN coincident Dp-branes wrappingΣ .

Now each one of those Dp-branes, through the Sen–Witten construction[2,10], can be
thought of as a superposition ofN ′ = 2k−1 Dp′-brane/antibrane pairs onRp+1. Here 2k
is the codimension of the Dp-branes andp′ > p. According to Sen-Witten[2,10], an
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appropriate choice for the tachyon field makes this superposition equivalent to a Dp-brane
wrapped onΣ . Eventually passing to the limitN → ∞ will also enforceN ′ → ∞, thus
bringing us into the stable range of K-theory. This is in nice agreement with[6,11], where it
has been proposed that the K-theory analysis of a superposition ofN ′ Dp′-brane/antibrane
pairs is best performed in the limitN ′ → ∞.

7.2. The dual description: M(atrix) theory

Our system ofN Dp-branes wrapped onΣ has a dual description that allows us to
make contact with the setup of[18]. We first unwrap the Dp-branes into flat space. Next
we compactify them alongp spatial coordinates, onp copies ofS1. A further step is to
apply a T-duality on allp circles. Finally, we decompactify them by sending their radii to
infinity. The result is a system ofN D0-branes. So far the Riemann surfaceΣ has played
a spectator role. However, theN D0-branes can be compactified on the originalΣ . The
resulting system is best understood in 11-dimensional M(atrix) theory compactified on the
Riemann surfaceΣ , as done in[18]. For the rest of this paper, we will adhere to this dual
picture. Then the limitN → ∞ required by M(atrix) theory corresponds, in the dual-type
IIB description, to considering theK-bundles of[11], rather than the Azumaya algebras of
[26].

Some comments are in order. Assume applyingp − 1 T-dualities instead ofp, to get
a system of D1-branes. The D1-brane is S-dual to the fundamental-type IIB string. The
latter can be wrapped onΣ at the cost of breaking all supersymmetry[33]. Hence the
Dp-brane wrapped onΣ breaks all supersymmetry, too, and it corresponds to a non-BPS
configuration.

The D1-brane can be viewed as the strong-coupling limit of the fundamental type IIB
string in 10 dimensions. On the other hand, 11-dimensional M(atrix) theory is a model for
M-theory, i.e. for the strong-coupling limit of type IIA string theory. Moreover, T-duality
being a perturbative symmetry, it will not exchange the weak and the strong-coupling
regimes. This accounts for the mismatch of dimensions between the two dual descriptions
we have given.

7.3. The limitN → ∞

By Eq. (29), we have specified a class [H ]Q. In the limitN → ∞, this [H ]Q specifies an
isomorphism class ofK-bundles overQ. Picking a torsion class inH 3(Q,Z) amounts to
picking an isomorphism class of projectively flat bundlesE → Qwith fibreK and structure
groupPU(H). If we now choose the manifoldY as explained inSection 7.4, then such an
isomorphism class of bundles is specified by a representation ofπ1(Σ) into PU(H).

As summarised inSection 4.1, in [18] we have explicitly constructed, on the separable
Hilbert spaceH = L2(H), a 1-parameter familyρb,b ∈ R, of projectively unitary represen-
tations of the Fuchsian groupΓ � π1(Σ) uniformisingΣ . Although infinite-dimensional,
these representationsρb can be understood as the double-scaling limitM → −∞,N → ∞,
of the Narasimhan–Seshadri representationsρNM reviewed inSection 3. The latter represent
π1(Σ) on CN , whereN is the rank of the gauge groupU(N) carried by the stack ofN
coincident branes, andM ∈ Z is the ’t Hooft magnetic flux obtained integrating the ’t Hooft
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2-form [f ] overΣ . The parameterb ∈ R on whichρb depends can be fine-tuned at will.
The identification between ourρb of Eq. (18), and its finite-dimensional counterpartρNM

of Narasimhan–Seshadri,Eq. (12), proceeds as follows. TheN × N unitary matricesuj
acting onCN become unitary operatorsUj acting onL2(H),

lim
N→∞,M→−∞

uj = Uj , (37)

and the phase multiplying the identity on the right-hand side of(12) is identified with that
on the right-hand side of(18),

lim
N→∞,M→−∞

exp

(
2π i

M

N

)
= exp(−2π iθb). (38)

In this way we have determined a 1-parameter family of projectively flatK-bundlesEb →
Σ . We conclude that our infinite-dimensional representationsρb of π1(Σ) of Eq. (18)are
induced by turning on a ’t Hooft magnetic flux across the Riemann surfaceΣ inside the
world-volume of theN = ∞ coincident Dp-branes.

As we have seen inSection 4.1, one can interpret the infinite-dimensional representation
of π1(Σ) given in[18] as defining a non-commutativeC�-algebraC�(Γ, θ). Through the
Sen–Witten construction, the latter is the result of turning on a nonzero ’t Hooft magnetic flux
in the world-volume of theN ′ = ∞ Dp′-brane/antibrane pairs that are equivalent toN =
∞ coincident Dp-branes wrapped onΣ . Alternatively, through the anomaly cancellation
condition, this flux is due to turning on a background Neveu–SchwarzB-field.

7.4. Choice of the fibre bundle overΣ

Given thatH 3(Σ,Z) is trivial, one would like to wrap the Dp-branes on a manifold
whose real dimension is greater than 2. This would allow the correspondence between
K-bundles and classes inH 3(Σ,Z) a possibility of being nontrivial. Fibre bundles over
the Riemann surfaceΣ thus come to mind. We will not attempt a complete classification
of all possibilities, as in fact trivial bundles overΣ will suffice. We will satisfy ourselves
with an example of a trivial bundleΣ × Y , for a certain choice of the space–time manifold
Y , that will allow for a nontrivial torsion. Again it will turn out that more than one choice
for Y is possible. The space–time manifoldY will be determined imposing consistency
conditions.

In type IIB superstring theory, the manifoldY must be orientable and spin. Further-
more,Q = Σ × Y must allow for a nontrivial torsion subgroup withinH 3(Q,Z). Fi-
nally,H 3(Q,Z) parameterises isomorphism classes ofK-bundles overQ, but instead we
need it to parameterise isomorphism classes ofK-bundles overΣ . HenceY must be cho-
sen in such a way that torsion classes inH 3(Q,Z) continue to parameteriseK-bundles
overΣ .

This refines the minimum value ofp determined inSection 5, where it was found that
p ≥ 3. A nontrivialH 3(Q,Z) further imposesp > 3. Indeed,p = 3 would correspond to
a (1 + 1)-dimensionalY . Factorise it (at least locally) as the product of a time-like factor
Yt times a space-like factorYx . The latter can be chosen compact or not, which leads to
these topologically different choices forYx : S1 andR, and quotients thereof, such asRP1,
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for example. One finds that none of these choices satisfies our needs. TakingYx = R leads
to a trivial H 3(Q,Z). The choiceYx = S1, while producing a nontrivialH 3(Q,Z), is
torsionless; so is the case ofRP1.

Within the type IIB theory the next allowed value isp = 5. Again separating out the
trivial time-like dimension, let us see that one can find a space-like manifoldY in real
dimension 3 satisfying the necessary requirements.

For the correspondence between torsion classes inH 3(Q,Z) andK-bundles overΣ
to hold, one would on first sight requireY to have a trivial fundamental group, so that
π1(Q) = π1(Σ). However, this condition can be relaxed to a less stringent one. We
will see presently that an abelianπ1(Y ) will suffice. Kunneth’s formula[30] allows us
to write

H 3(Σ × Y,Z) ⊂ H 0(Σ,Z)⊗H 3(Y,Z)⊕H 1(Σ,Z)⊗H 2(Y,Z)⊕H 2(Σ,Z)

⊗H 1(Y,Z)⊕H 3(Σ,Z)⊗H 0(Y,Z). (39)

In the particular case at hand, one can show that the above inclusion is actually an equality.
Now H 3(Σ,Z) is identically zero, whileH 0(Σ,Z) = Z = H 2(Σ,Z) andH 1(Σ,Z) =
Z2g. Torsion pieces, if any, must come fromH 3(Y,Z),H 2(Y,Z) andH 1(Y,Z). Allowing
for an abelianπ1(Y ) for the moment, the manifoldRP3 (which is orientable and spin) has
a nontrivial torsion

H 1(RP3,Z) = Z2. (40)

More generally, branes on group manifolds have been studied in[34].
It remains to explain why one can allow for an abelianπ1(Y ) without spoiling the

one-to-one correspondence between torsion classes inH 3(Q,Z) and isomorphism classes
of K-bundles overΣ . The latter are in bijective correspondence with projectively unitary
representations ofπ1(Σ). Now the decompositionπ1(Q) = π1(Σ)× π1(Y ) together with
Eq. (18)provides the answer: factors coming from an abelianπ1(Y ) will cancel when
computing the left-hand side of(18). (We could even allow for a projectively represented
abelian groupπ1(Y ), at the cost of considering its nontrivial contribution to right-hand side
of (18).)

We close this section with an observation. The anomaly cancellation condition is key
to our construction. We have applied it within type IIB superstring theory, in order to link
it to the Sen–Witten superposition of branes with antibranes. However, one could just as
well apply it to bosonic string theory, where non-orientable manifolds are allowed and the
anomaly cancellation condition[26] simplifies to

βN([f ]) = [H ]Q. (41)

The requirements on the manifoldY thus become less restringent, and one can verify that
the following examples satisfy all our needs. The two-dimensional real projective space
RP2 and the Klein surfaceK 2 have nontrivial torsion given by

H 1(RP2,Z) = Z2, H 1(K 2,Z) = Z ⊕ Z2. (42)
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The absence of supersymmetry in our construction (see alsoSection 8) allows us to consider
these possibilities as valid for the physical realisation ofC�(Γ, θ) in terms of strings and
branes.

8. BPS-like spectra ing >1 from the Narasimhan–Seshadri theorem

In g = 1, Morita equivalence of non-commutative gauge theories is reflected in the
T-duality of superstring theory[35]. If we were to follow the reasoning applied ing = 1[20],
we would now have to identify the dual tessellationT ∗(H). The latter would parameterise the
endomorphisms EndENM of the moduleENM. However,T ∗(H)must be a quantum space,
sinceΓ is non-abelian. Moreover, ing > 1 there is no T-duality, and compactification
breaks all supersymmetry[33]. Hence, unlike ing = 1, there are no supersymmetric BPS
spectra ing > 1. This notwithstanding, the breakdown of supersymmetry does not prevent
the existence of stable, non-BPS states in M-theory[2,10].

We will therefore follow an alternative route. We will prove the existence of constant-
curvature connections on the projective modulesENM. We will see that, as ing = 1, ing > 1
there exists a moduli space of such connections. Even though there is no supersymmetry,
one can take such connections as defining theg > 1 analogues of BPS states on the torus,
since the latter were also characterised as having constant-curvature. Ing = 1 the stability
of such states was a consequence of supersymmetry. In the absence of supersymmetry,
however, the stability of these states deserves a separate study.

8.1. Constant-curvature connections onENM

The finite-dimensional spaceCN(M) in Eq. (23)is the fibre of a stable holomorphic bundle
overΣ . Let us assume that the double-scaling limitM → −∞,N → ∞ respects stability.
In other words, we assume that this limit can be taken in such a way thatL2(H) becomes
the fibre of an (infinite-dimensional) stable holomorphic bundle overΣ . Then a suitable
infinite-dimensional generalisation of Donaldson’s version of the Narasimhan–Seshadri
theorem establishes the existence of a metric connection∇D such that the constant-curvature
condition(16)

FD = −2π i

(
M

N
− θb

)
ωI (43)

holds. Above,ω equals the Poincaré 2-form dz∧dz̄/(Im z)2 onH, andI denotes the identity
onENM.

A remark is in order. There is a formal analogy between Eq.(3) andEq. (43). However,
contrary to the non-commutative torus, our non-commutativeC�-algebraC�(Γ, θ) and
its projective modules cannot be obtained from the representation theory of the Heisenberg
algebra. In fact we have followed a route different from that of the non-commutative torus
[20]. In g = 1 one first constructs a derivationδ of the C�-algebra. Next one usesδ
in order to define a connection∇. Finally, ∇ is used, as inEq. (3), in order to impose
the constant-curvature condition. Ing > 1 we have bypassed this procedure because the
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constant-curvature condition(43) is no longer a Heisenberg algebra. Without defining a
derivationδ ofC�(Γ, θ), the Narasimhan–Seshadri theorem directly allows us to construct
the desired connections on the projective modulesENM.

8.2. Moduli space of constant-curvature connections

The previous construction relied on the notion of stability for holomorphic vector bundles
overΣ . As we have seen, stability is required in order to have constant-curvature connections
or, in physical terms, BPS-like states. There is one more reason to require stability. Ing = 1
there exists a moduli space of BPS states. Does a moduli space of BPS-like states exist in
g > 1?

Topological vector bundles overΣ are classified, up to isomorphism, by the rankN
and the degreeM. However, the classification ofholomorphicvector bundles involves
continuous parameters, and so we have a moduli space of holomorphic vector bundles over
Σ . From the above it follows that this moduli space coincides with that of constant-curvature
connections. The latter define the higher-genus analogue of BPS states. So theg > 1
analogues of BPS states are parameterised by the points of the moduli space of holomorphic
vector bundles. It turns out that the latter space in general is not Hausdorff, but the condition
of stability suffices to ensure a good moduli space. The precise statement is as follows[36]:
fix the dataΣ,N andM, the latter two coprime. Then there exists a complex smooth,
connected and compact moduli spaceM(g)

NM of equivalence classes of rankN , degreeM,
stable holomorphic vector bundles overΣ , with dimensionN2(g − 1) + 1. The moduli
spaceM(g)

NM depends only on the residue class ofM moduloN .

9. Conclusions and outlook

In this paper, we have established an interesting link between non-commutative ge-
ometry and the Sen–Witten construction of non-BPS branes, by explicitly constructing a
non-commutativeC�-algebraC�(Γ, θ) that generalises tog > 1 what the non-commuta-
tive torus does ing = 1. The mathematical definition ofC�(Γ, θ)was presented in[18]; in
this paper it has been given a physical interpretation in terms of the wrapping of Dp-branes
on a Riemann surfaceΣ in g > 1, with a backgroundB-field turned on. The latter deforms
the commutativeC�-algebra of functions to a non-commutativeC�-algebra that we have
succeeded in identifying. Finally, we have constructed a family of projective modules over
C�(Γ, θ) and proved the existence of constant-curvature connections on them.

In g = 1, Morita equivalence led to a whole SL2(Z) orbit of Morita-equivalent non-
commutative tori[20]. This was due to the abelian property of the fundamental group of the
torus, which allowed for an easy identification of the commutant. However, the fact that the
Fuchsian group uniformising a Riemann surface ing > 1 is non-abelian implies that there
exists no Morita-group orbit ofC�(Γ̃ , θ̃ ) algebras that are Morita-equivalent toC�(Γ, θ).
This notwithstanding, we have succeeded in identifying theg > 1 analogues of super-
symmetric BPS states on the non-commutative torus, thanks to Donaldson’s description of
stable vector bundles over Riemann surfaces.
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An important physical question to address in this context is the stability of the BPS-like
states constructed here. It would be very interesting to relate the mathematical property
of stability of holomorphic vector bundles with the physical property of being a stable,
non-BPS state. Mathematically, one would like to compute the topological numbers and the
Chern character for the projectiveC�-modulesENM. We hope to report on these issues in
the future.
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