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Abstract

We study the wrapping @f -type IIB Dp-branes on a compact Riemann surfatie genug > 1
by means of the Sen-Witten construction, as a superpositidi-tfpe 1B Dp’-brane/antibrane
pairs, withp’ > p. A background Neveu-Schwarz figlddeforms the commutative™ -algebra of
functions onX to a non-commutative **-algebra. Our construction provides an explicit example
of the N — oo limit advocated by Bouwknegt-Mathai and Witten in order to deal with twisted
K-theory. We provide the necessary elements to formulate M(atrix) theory on thi€ fiealgebra,
by explicitly constructing a family of projective *-modules admitting constant-curvature con-
nections. This allows us to define tge> 1 analogue of the BPS spectrum of stateg s 1, by
means of Donaldson’s formulation of the Narasimhan—Seshadri theorem. © 2002 Elsevier Science
B.V. All rights reserved.

MSC:19M05; 81T30; 81T75
PACS:11.25.-w
Subj. Class.Strings

Keywords:K-theory; D-branes; Stable vector bundles on Riemann surfaces; Non-commutative geometry

1. Introduction
1.1. Setting

The fact that D-branes carry vector bundles has allowed to interpret D-brane charges and
fields as classes in the K-theory of space—time, rather than as integer cohomology classes
[1-9]. This identification has led to a better understanding of the spectrum of D-branes,
in particular of stable, non-supersymmetric D-branes. Such non-BPS branes can often be
understood as bound states of a brane—antibrane system with tachyon condéb@htion
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It has been proposd@,11] that the K-theory analysis of a superposition\gftype 11B
Dp’-brane/antibrane pairs is best performed in the livit— oco. This limit allows for
the possibility of considering a non-torsion class for the field streifjte= dB of the
Neveu—Schwarz field.

Along a related line, M(atrix) theorjd 2,13]as a model for M-theory has been compact-
ified toroidally in[14]. By turning on a backgroung-field one can deform this compact-
ification to a compactification on the non-commutative tdafs16] The effective gauge
theory on the D-branes then becomes non-commuttixie

1.2. Aim

In this paper, we combine the three lines named above. The aim is to provide a physical
interpretation for thee ™ -algebra constructed abstractly[k8]. The strategy is as follows.

We first wrapN-type IIB Dp-branes on a manifold x Y, whereX' is compact Rie-
mann surface with genus> 1 andY is an auxiliary space—time manifold to be specified
presently. (With more generality, one could consider a nontrivial bundle Bvastead of
X x Y.) Following[10], each one of th&y wrapped »-branes can be viewed as a super-
position of N’ Dp’-brane/antibrane pairs, with an odd valuepof> p. When wrapping a
single-type IIB Dp-brane on a manifold of codimensiok,2x minimum ofN’ = 2~1-type
IIB D p’-brane/antibrane pairs are need2d Eventually passing to the lim¥ — oo will
also enforceV’ — oo and bring us into the stable range of K-theory. Simultaneously we
turn on a backgroun@-field across¥'.

On the other hand, this system possesses a dual description in type IlA string theory
or, more precisely, in 11-dimensional M-theory as described by M(atrix) theory. In this
dual setting, a P-brane is compactified op copies ofS*, next T-dualised along ajp
circles, and finally decompactified into a type IIA DO-brane. The lizit> oo required
by M(atrix) theory has a natural counterpart in the dual-type IIB description: it arises from
the requirement of allowing for the possibility that the background field strefgtie a
non-torsion class. Our model provides an explicit realisation, in string theory terms, of the
twisted K-theory described abstractly by Bouwknegt and Maihs], and advocated by
Witten [6] in a similar K-theoretic setting.

From this M(atrix) theory, description of the wrappegdbranes, the connection with
non-commutative geometifit9] is now immediate: the backgrourig-field deforms the
commutativeC ™ -algebra of functions o’ to a non-commutativ€ * -algebra.

1.3. Outline

This paper is organised as follows. As a preparationgfor 1, Section 2reviews the
non-commutative torus from the standpoint of the Heisenberg algebra. The latter can be in-
terpreted as eentral-curvature conditioon a projective module over the non-commutative
torus[20,21] (Centralmeans that as an endomorphism of the projective module, the cur-
vature is proportional to the identity. By abuse of terminology, we will Eall (16)below
aconstant-curvature conditigmather than a central-curvature condition.)

The constant-curvature condition has a natural extensign:td. in the theory of stable,
holomorphic vector bundles over a Riemann surfacéogether with Donaldson’s version



J.M. Isidro/ Journal of Geometry and Physics 42 (2002) 325-341 327

[22] of the Narasimhan—Seshadri theorf28]. The latter provides the right mathematical
description of the twisted gauge bundles arising on the stack of coincident branes required by
the Sen-Witten construction of non-BPS branes. Indeed such bundles can be characterised
as admitting a constant-curvature connection. These points are summaiSsdion 3

Section 4resents this ne@ ™ -algebra. We recall froifi 8] the definition of its generators
and of the trace required to write down the M(atrix) theory action, and explicitly construct
the corresponding projectiv@™-modules.

Wrapping a Dp-brane on a closedp + 1)-dimensional submanifold of space—time is
possible only when the condition of cancellation of global worldsheet anomalies is satisfied
[2,24—26] This point is dealt with irBection 5 In particular, this analysis fixes the dimen-
sionality of the Dp-branes to be > 3; this bound will be later refined by cohomological
arguments irSection 7.4 Section 6presents, followind11,26], the necessary formalism
about the background field strength, oriented towards the imit oo that will be taken
in Section 7

In Section 7 we first describe the setup in type 1B string theory terms. Next we pass,
through a duality transformation, to an equivalent M(atrix) theory description of\the
Dp-braneswrapped abB. As N — oo, s0too mustthe 't Hooft magnetic flif go toinfin-
ity, in a certain sense to be specified presently. We will analysddiikle scaling limitn de-
tail; ourC* -algebra of18] is precisely the double scaling limit of the Narasimhan—Seshadri
representations of the Fuchsian grauniformising the Riemann surfacg in g > 1.

In Section § we use Donaldson’s theorem to identify the- 1 analogues of BPS states
on the non-commutative torus, by explicitly identifying constant-curvature connections
on the projectiveC ™ -modules constructed iSection 4 Finally, Section 9presents some
conclusions and perspectives.

2. BPS spectra ing=1 from the Stone—von Neumann theorem
2.1. The constant-curvature condition

Let us set the fermions of the M(atrix) theory action to zero, and consider a state deter-
mined by the condition that a connection on a projective module over the non-commutative
torus7,2 have constant field strength

Fik = wil, (1)

i.e.the curvature must be proportional to the identity endomorphism. Abgie a constant
2-form over the Lie algebra of derivationsﬁ}. Inthe presence of supersymmetry such field
configurations give rise to BPS stafé$§,20], with an amount of preserved supersymmetry
given by the dimension of the space of spiners’ that solve the equation

e Fy 4+ €1 =0, (2)
wherer® = [/, '*]is a commutator of Dirac matrices. In the absence of supersymmetry,

as will be the case ig > 1, condition(1) is the closest analogue Bfj. (2)defining a BPS
state.
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In [21], it has been argued that the complete set of equations specifying a projective
module over the toru%},z, together with a constant-curvature connection on it, is given by

Uity = %LU, [V, U] = Slhe, [V, Vi] = i Fid, ®)

where j, k = 1,2. These equations can be solved by first representing the Heisenberg
algebra V;, Vi] = iFl, through the Stone-von Neumann theorem, on the Hilbert space
L?(R). The hermiticity of this representation ensures the unitarity of the generators

Uj = expli Fy V). (4)

Next we tensor the latter with gV x N)-dimensional representation of 't Hooft's matrices
uj

wjug = M Ny ;o My e Z, (6)
acting on the spacg” . The complete projective module oVPjE? is given by

Env = L*(R) ® Cly). (6)
where the notatio(if‘,’w) makes reference to the magnetic flux= M12. The total gener-
ators

UQuj, j=12 @)
satisfy the algebra dfgz with a total deformation parameter

1 1
O = = 5—Fik +  Mik- (8)

The fact thatFjl is a c-number allows one to compute the deformation parameter by a
simple application of the Baker—Campbell-Hausdorff formula.

2.2. Moduli space of constant-curvature connections

The notion of a moduli spackt¢=D of constant-curvature connectiongir= 1 appears
naturally in the above pictufg1]. M¢=D js the space of solutions to the first two equations
of (3), modulo gauge transformations. Modules possessing different Chern numbers are
treated simultaneously in this approach. Fixing a Chern number corresponds to choosing a
connected component of the total moduli space of solutiofsjtd3)

The residual gauge transformations preserving the constant-curvature co(R)itton
respond toN x N unitary transformations acting on ti@&" factor of the moduleEnw.
Hence the moduli space of constant-curvature connections on a module with fixed integer
values of N and Mjx can be described as a space of inequivalent representations of the
matrix algebrg5). The latter in fact admits a continuum of inequivalent representations. In
order to identify it, we first consider the commutative toftsthat is dual to the original
commutative torug'?. Then the space of irreducible representationsdpfis described
by means of two complex humbexswith unit modulus, modulo a certain residual gauge
symmetry. LetE 4, A = (A1, A2), denote the corresponding irreducible representations,
and assume th&@&" decomposes &B" = ®]_, E 4,- The residual gauge symmetry acts by
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permutation on the summands as the permutation grélipand the moduli spacé1(s=1
isT2/S,.

3. The Narasimhan-Seshadri theorem
3.1. Statement of the theorem

Let I" denote the Fuchsian group uniformising a compact Riemann suxfadgth genus
g > 1 and without boundary. We now summarise some facts about projective, unitary
representations af' and the theory of holomorphic vector bundles o¥ef23] (for more
extensive treatments sg&7,28)).

Let€ — X be a holomorphic vector bundle ovErof rank N and degree, i.e. first Chern
class,M. The bundlef is calledstableif the ratio

M
(&) = N %)

satisfies the inequalite (£") < w(&) for every proper holomorphic sub-bundfé c £.
We may take-N < M < 0, as this may always be arranged by tensor multiplication with
a line bundle without losing stability.

Denote byy;, j =1,..., 2g, the generators af'. We have

g

[102i-v2ivaftavsh =1 (10)
j=1

For the purposes of this section we will temporarily assume fhatontains a unique
primitive elliptic elementyg of orderN, i.e. ¥ = I, with fixed pointzo € H that projects
toxg € ¥. Now letp : I' — U(N) be an irreducible unitary representation. It is said
admissiblgf

p(yo) = e 2" M/Ny, (11)

Putting the elliptic element on the right-hand side, and dengtipg) by « ;, an admissible
representation satisfies

8
[Twzj-awzjuzj quziy = MM, (12)
j=1

Theu; are theg > 1 generalisation of 't Hooft's matricg$).
On the trivial bundled x C¥ — H there is an action of : (z, v) — (yz, p(y)v). This
defines the quotient
HxcV H
xC Hog (13)
r r
Any admissible representation determines a holomorphic vector bépdle X of rank
N and degreé/. WhenM = 0, £, is simply the quotient bundlfL3). The Narasimhan—
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Seshadri theorem now states that a holomorphic vector buhdle X of rank N and
degreeM is stable if and only if it is isomorphic to a bundfg, wherep is an admissible
representation of". Moreover, the bundle§,, and&,, are isomorphic if and only if the
representationgs; andp, are equivalent.

Next consider the adjoint representationfobn EndC",

Adp(»)Z = p(y)Zp (y), (14)

whereZ € EndC" is understood as aW x N matrix. Let us also consider the trivial
bundleH x EndC"Y — H. Thereisanactionaf : (z, Z) — (yz, Ad p(y)Z) that defines
the quotient bundle

H x EndC¥
r

12

H
— =2 15
- = (15)

When¢ is stable, the bundle of endomorphisms End> X is isomorphic to the quotient
bundle(15).

3.2. Donaldson’s approach to stability of vector bundles

A differential-geometric approach to stability has been given by Donalf&jnFix a
Hermitian metric on¥, e.g. the Poincaré metric, normalised so that the aréaeduals 1.
Let us denote bw its associatedl, 1)-form. Then a holomorphic vector bundle is stable
if and only if it admits a metric connectiovip with constant-curvature

Fp = —2nip©)wl, (16)

and such a connectiovp is unique. As done for BPS statesdn= 1[20], in Section 8ve
will use the constant-curvature conditi¢t6) to characterise BPS-like statesgn> 1.

4. Infinite-dimensional projective representations of the Fuchsian groug”

Inorderto study M(atrix) theoryig > 1, the following elements are needed: aknowledge
of theC**-algebra, a trace and the projectig& -modules.

4.1. Definition of theC*-algebraC™ (I", 9)

Let us recall from[18] the construction of the operatat§ = p,(y;) that provide a
projectively unitary representatign of the Fuchsian group'. We first pick a fundamental
domainF; for the Fuchsian group’ uniformising X', with basepoint € H, in order to
have a tessellatiofi (H) of H. On the Hilbert spac&?(H) one defines, for every value of
the Fuchsianindex =1, ..., 2g,

YiZ 1 . —
L{](.Z) = eXp(Ib/ ! A> H eXp[)n,()/)(La + Loz)]‘ (17)
Zz

a=-—1
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Above, theL,, L, are the standard &R) differential generators®*19;, z19:, A =
d Rez)/Im(z) is a gauge field o, the)hfj) are a set of numerical parameters specifying

a complex structure o®, andb is an arbitrary real parameter. One can prove thaMgﬁb
are unitary and satisfy

8
[ [@hjsthojtty) ;) = &2 (18)
j=1

with 6, a real parameter that is independent of the basepa@int is given by

0y = bx(Z) = b(2 — 2g). (19)

Consider the associative algebra with involution whose unitary generators auté“trw

Eq. (18) It admits a faithful unitary representation @d(H). Taking the norm closure of
this image[19], this algebra becomes@~ -algebra that we denote &y (I, 6).

4.2. Definition of the trace

A trace can be defined by means of the following equivalent presentatioi of, 6)
[18]. Eachy # | in I' can be univocally expressed as a positive power of a primitive
elementp € I', primitive meaning that it is not a positive power of any other elemedt in
[29]. LetV; be the representative gf Any V € C™ can be written as

o0
V=Y Y Vi+al (20)

pe{prim} n=0
for certain coefficients,(f’ ), co. We now define a trace as
try = co. (21)

4.3. Construction of projectiv€™ (I", §)-modulesEnm

The Hilbert spacd.?(H) becomes a right ™ (I", §)-module under right multiplication

of &€ € L2(H) with theuj(.”. A C™(I', §)-valued inner product, ) on this module can be
defined by summing over the Fuchsian indices, and over the vertice®B(H):

2g
"
Em= > Y E U U, £ne L2H). (22)

zeT(H) j=1

In Eq. (22) (, ) denotes the Hermitian product drf(H) constructed with respect to
the Poincaré metric ofl. Next we tensor the differential operatd@Z) with a set of

Narasimhan—Seshadri matrices A projectiveC*(F, 0)-module Enn is defined as the
tensor product of.2(H) times the Narasimhan—Seshadri representation s(p%(;pwith
degreeM:

Env = L*(H) ® Cfy). (23)
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The total generators oFiywg areul(.Z) ® u j, with the matrix part contributing a piece

2g

En, NN = Z(EN, T)Nu;r)uj, En,ny € CV (24)
=1

to the scalar product ofnm. In Eq. (24) (, ) denotes the standard Hermitian product on
CV. The total deformation parameter for the genera&éfé@ uj is then

M
Otot = O — N (25)

5. The anomaly-cancellation condition

In type 1IB superstring theory on a space—titkie consider wrapping a p-brane on
a closed,(p + 1)-dimensional submanifold c X. The analysis of global worldsheet
anomalies for open superstrings attached jplidanes has been performed[#)25,26]
Let us briefly summarise it.

In the presence of a background Neveu—-Schwarz 2-Brra single Oy-brane can be
wrapped on a submanifol@ c X if and only if the normal bundlgy of Q satisfies the
condition of cancellation of global anomalies for open superstrings endirg; on

B2(wa(N)) =[H] . (26)

Here [H] is the integer cohomology class whose de Rham representafiiedsiB, [H] o
denotes its restriction t@, andpz (w2 (N)) is the image of the second Stiefel-Whitney class
wa(N) € H2(Q, Z») under the Bockstein homomorphiste : H2(Q, Z2) — H3(Q, Z)
induced by the short exact sequence

0—-2Z—->2Z—>2,—0. (27)

Above, the second arrow is multiplication by 2, while the third arrow is reduction
modulo 2.

The wrapping ofN Dp-branes on a submanifol@ is governed by a generalisation
of Eq. (26)that we describe next. WherHp = 0, the N Dp-branes carry ai/ (N)
principal bundle while, for ff]o # 0O, the Dp-branes carry a princip@U(N)/Z y bundle
that cannot be lifted to & (N) bundle. Now the 't Hooft magnetic 2-form is a cohomology
class [f] € H?(Q, Zy). Consider the image off] under the Bockstein homomorphism
By H3(Q,Zn) — H3(Q, Z) induced by the short exact sequence

0—-2Z2Z—-72Z—>27Zy—0, (28)
where the second arrow is multiplication Ny while the third arrow is reduction modul@.
The imagesy ([ f]) € H3(Q, Z) measures the obstruction to lifting SWN)/Z y bundle

toalU (N) bundle. It turns out that global worldsheet anomalies for open superstrings ending
on the Dp-branes cancel if and only if

By ([ f]) + B2(w2(N)) = [H]p. (29)
For the above condition to be nonempty it is required ghat 3.
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6. The background field strength
6.1. Local description of a twisted bundle

An SU(N)/Zy bundle withoutU (N) structure has the following description in terms
of transition functions. Take a good coveringXfby open setdV;, and denote bgu(N)
the Lie algebra oBU(N)/Zy. A vector bundle associated with the princi@U(N)/Zy
bundle has sectiong : W; — su(N). Transition functiong;j : W; N W; — U(N) are
defined on double overlaps such that

fi=gifigit = gifisi (30)
while on triple overlaps¥; N W; N W, the consistency condition

gii &jk&ki = hijk (31)
must be satisfied. Abovaijx is anNth root of unity obeying the cocycle relation

hijhik = hj hijl (32)
on quadruple overlaps. From here

In Ajjk 4+ In g — I Ajg — I hj = 2rikij, (33)
where ki defines an element e H3(X,Z) which is the obstruction to lifting the
SU(N)/Zy bundle to aJ(N) bundle.

Therefore, in the presence dff|] # 0, gauge bundles on the branes are described by

transition functions that obelyq. (31) The direct sum of two such twisted bundles obeys

the same condition. Under the usual equivalence relation of K-theory, equivalence classes
of twisted bundles define the twisted K-theoryXof denotedk| 1 (X) [2].

6.2. The Brauer group

The background field strengtd determines a class in theech cohomology group
H3(X, Z) [30]. The latter decomposes as

HS(X,Z):Z@...@Z@qu@...gz%, (34)

The Z, pieces are calledorsion subgroupsTorsion classes determine a subgroup of
H3(X, Z), called the Brauer group of and denoted BtX). Next we give two differ-

ent descriptions of the latter. One is in terms of finite-dimensional Azumaya algebras over
X, the other one is throughi-bundles with structure group AUE). The link between these

two descriptions of BtX) is explained irf11].

6.3. Azumaya algebras ovar
Let My (C) denote the algebra of compléx x N matrices. Its automorphism group

Aut(My (C)) is PUN) = SUN)/Zy, wherePU(N) = U(N)/U (1) denotes the projec-
tive unitary group orC”.
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An Azumaya algebra oveX is a fibre bundle ovek, whose typical fibre is the algebra
My (C). Sectionsf; are My (C)-valued and transition functiong arePU(N)-valued, in
such a way thaEgs. (30)—(33pre satisfied.

For any torsion class]] € H3(X, Z) there is a unique (equivalence class of) Azumaya
algebras and the corresponding twisted K-the&fy;;(X) [11,26]

6.4. K-bundles oveX

In the C*-norm topology, the limi{31]
lim My(C) =K (35)
N—o00

defines theC* -algebraX of compact operators on an infinite-dimensional, separable
Hilbert spaceH. Let U (#) denote the group of unitary operatorsdnand letPU(H) =
U(H)/ U (1) be the projective unitary group d. By the same token we can set

lim SUw)
N—oo Zpn
Furthermore, it holds that AgK) = PU(H).
Let us consider a locally trivial bundiover X with fibre KC and structure group Aut).

Such abundle is also determinediys. (30)—(33)where now the typical fibre is the algebra
IC, hence sectiong; areC-valued and transition functiong arePU(#)-valued[11].

= PUH). (36)

6.5. H3(X, Z) as parameter space fa¢-bundles

Isomorphism classes of locally trivial bundl€®ver X with fibre K and structure group
Aut(K) are parameterised b¥3(X, Z). With everytorsion classin H3(X, Z) there is
associated an isomorphism classpodjectively flatbundlesE with fibre I and structure
group AutC) [11]. Such bundles are given by a representatiomdX ) into Aut(C) [27].

The cohomology class iH3(X, Z) corresponding to a bundfawith fibre  and structure
group AutX) is called theDixmier—Douady invarianof &; it is denoteds(£) [32]. In
terms of transition functions,(£) equals the cohomology classgiven inEq. (33) with
the obvious replacements.

7. Wrapping D-branes on ag >1 Riemann surface
7.1. The type IIB description

Inwhat follows we take) to be a manifold of the fornx' x Y, for some (as yet) unspecified
manifold Y. We want to wrapV coincident type 11B p-branes orQ. Forgetting about the
manifold Y for the moment, we will speak a¥ coincident Dp-branes wrappind-.

Now each one of those pbranes, through the Sen—-Witten construc{@i0], can be
thought of as a superposition 8f = 2¢~1 Dp’-brane/antibrane pairs d®’*1. Here %
is the codimension of the pbranes ang’ > p. According to Sen-Witterj2,10], an
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appropriate choice for the tachyon field makes this superposition equivalentjebsaibe
wrapped onX. Eventually passing to the limi¥ — oo will also enforceN’ — oo, thus
bringing us into the stable range of K-theory. This is in nice agreemen{évitk], where it
has been proposed that the K-theory analysis of a superpositigh@p’-brane/antibrane
pairs is best performed in the lim{’ — oco.

7.2. The dual description: M(atrix) theory

Our system ofN Dp-branes wrapped o' has a dual description that allows us to
make contact with the setup fif8]. We first unwrap the -branes into flat space. Next
we compactify them along spatial coordinates, op copies ofS1. A further step is to
apply a T-duality on alp circles. Finally, we decompactify them by sending their radii to
infinity. The result is a system @¥ DO-branes. So far the Riemann surfaeéhas played
a spectator role. However, thé DO-branes can be compactified on the origi®al The
resulting system is best understood in 11-dimensional M(atrix) theory compactified on the
Riemann surface, as done irf18]. For the rest of this paper, we will adhere to this dual
picture. Then the limitV — oo required by M(atrix) theory corresponds, in the dual-type
IIB description, to considering thi€-bundles of11], rather than the Azumaya algebras of
[26].

Some comments are in order. Assume applying 1 T-dualities instead op, to get
a system of D1-branes. The D1-brane is S-dual to the fundamental-type IIB string. The
latter can be wrapped o& at the cost of breaking all supersymmef83]. Hence the
Dp-brane wrapped o' breaks all supersymmetry, too, and it corresponds to a hon-BPS
configuration.

The D1-brane can be viewed as the strong-coupling limit of the fundamental type 11B
string in 10 dimensions. On the other hand, 11-dimensional M(atrix) theory is a model for
M-theory, i.e. for the strong-coupling limit of type IIA string theory. Moreover, T-duality
being a perturbative symmetry, it will not exchange the weak and the strong-coupling
regimes. This accounts for the mismatch of dimensions between the two dual descriptions
we have given.

7.3. The limitN — oo

By Eq. (29) we have specified a clasH] . In the limit N — oo, this [H] ¢ specifies an
isomorphism class df-bundles overQ. Picking a torsion class iff3(Q, Z) amounts to
picking an isomorphism class of projectively flat bundfes> Q with fibre IC and structure
groupPU(H). If we now choose the manifold as explained irfSection 7.4then such an
isomorphism class of bundles is specified by a representation(af) into PU(H).

As summarised irsection 4.1in [18] we have explicitly constructed, on the separable
Hilbert spacé{ = L2(H), a 1-parameter family,, b € R, of projectively unitary represen-
tations of the Fuchsian group ~ 1(%") uniformising X'. Although infinite-dimensional,
these representatiops can be understood as the double-scaling livhit> —co, N — oo,
of the Narasimhan—Seshadri representatigisreviewed inSection 3The latter represent
71(X) on CV, whereN is the rank of the gauge group(N) carried by the stack oV
coincident branes, and € Z is the 't Hooft magnetic flux obtained integrating the 't Hooft
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2-form [f] over X. The parameteb € R on whichp, depends can be fine-tuned at will.
The identification between ouy, of Eq. (18) and its finite-dimensional counterpaiy
of Narasimhan—-SeshadEg. (12) proceeds as follows. Th¥ x N unitary matrices: ;
acting onC" become unitary operatots; acting onL?(H),
li i =U; 7

N—>oo!?41—>—oou] U ’ (3 )
and the phase multiplying the identity on the right-hand sid@.2jis identified with that
on the right-hand side ¢fi8),

. .M .
N_m!m_)_ooexp<2mﬁ) = exp(—2mi6p). (38)
In this way we have determined a 1-parameter family of projectivelydtatindless, —

. We conclude that our infinite-dimensional representatignsf 1 (%) of Eq. (18)are
induced by turning on a 't Hooft magnetic flux across the Riemann sufaaeside the
world-volume of theN = oo coincident Dp-branes.

As we have seen iection 4.1one can interpret the infinite-dimensional representation
of 71(X) given in[18] as defining a non-commutativ&" -algebraC ™ (I, §). Through the
Sen-Witten construction, the latter is the result of turning on a nonzero 't Hooft magnetic flux
in the world-volume of theV’ = oo D p’-brane/antibrane pairs that are equivalenwte-

oo coincident Dp-branes wrapped o&'. Alternatively, through the anomaly cancellation
condition, this flux is due to turning on a background Neveu—Schwdigld.

7.4. Choice of the fibre bundle over

Given thatH3(X, Z) is trivial, one would like to wrap the p-branes on a manifold
whose real dimension is greater than 2. This would allow the correspondence between
K-bundles and classes #3(X, Z) a possibility of being nontrivial. Fibre bundles over
the Riemann surfac& thus come to mind. We will not attempt a complete classification
of all possibilities, as in fact trivial bundles ovér will suffice. We will satisfy ourselves
with an example of a trivial bundIZ' x Y, for a certain choice of the space-time manifold
Y, that will allow for a nontrivial torsion. Again it will turn out that more than one choice
for Y is possible. The space—time manifdidwill be determined imposing consistency
conditions.

In type IIB superstring theory, the manifold must be orientable and spin. Further-
more,Q = X x Y must allow for a nontrivial torsion subgroup withii3(Q, Z). Fi-
nally, H3(Q, Z) parameterises isomorphism classegdundles overQ, but instead we
need it to parameterise isomorphism classe§-tundles overX. HenceY must be cho-
sen in such a way that torsion classesHA(Q, Z) continue to parameterisé-bundles
overX.

This refines the minimum value ¢f determined irSection 5 where it was found that
p > 3. Anontrivial H3(Q, Z) further imposeg > 3. Indeedp = 3 would correspond to
a (1 + 1)-dimensionaly. Factorise it (at least locally) as the product of a time-like factor
Y; times a space-like factdf,. The latter can be chosen compact or not, which leads to
these topologically different choices fif: S andR, and quotients thereof, such@®*,
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for example. One finds that none of these choices satisfies our needs. Yaking leads
to a trivial H3(Q, Z). The choiceY, = S, while producing a nontriviaH3(Q, Z), is
torsionless; so is the caseRP.

Within the type IIB theory the next allowed value js= 5. Again separating out the
trivial time-like dimension, let us see that one can find a space-like manifatd real
dimension 3 satisfying the necessary requirements.

For the correspondence between torsion classé$3itQ, Z) and K-bundles overs
to hold, one would on first sight requiré to have a trivial fundamental group, so that
m1(Q) = m1(X). However, this condition can be relaxed to a less stringent one. We
will see presently that an abelian (Y) will suffice. Kunneth’s formulg30] allows us
to write

H3(X xY,2)c HY=Z,Z2)®@ H3(Y,Z)® HY(Z,Z2)  H*(Y,Z) ® H* (X, Z)
QHYWY,Z)® H3(X,Z)® HO(Y, 2). (39)

In the particular case at hand, one can show that the above inclusion is actually an equality.
Now H3(X, Z) is identically zero, whileH%(X,2) = Z = H3(¥,Z) andHY(Z,Z) =

Z2¢ . Torsion pieces, if any, must come fral?(Y, Z), H2(Y, Z) andH1(Y, Z). Allowing

for an abelianr1(Y) for the moment, the manifol@P® (which is orientable and spin) has

a nontrivial torsion

HYRP3,2) = Z,. (40)

More generally, branes on group manifolds have been studigdijn

It remains to explain why one can allow for an abelian(Y) without spoiling the
one-to-one correspondence between torsion clasgés(@, Z) and isomorphism classes
of K-bundles overX. The latter are in bijective correspondence with projectively unitary
representations of; (X). Now the decomposition1(Q) = 71(X) x m1(Y) together with
Eq. (18)provides the answer: factors coming from an abefiaqy) will cancel when
computing the left-hand side ¢18). (We could even allow for a projectively represented
abelian groupr1(Y), at the cost of considering its nontrivial contribution to right-hand side
of (18).)

We close this section with an observation. The anomaly cancellation condition is key
to our construction. We have applied it within type IIB superstring theory, in order to link
it to the Sen—Witten superposition of branes with antibranes. However, one could just as
well apply it to bosonic string theory, where non-orientable manifolds are allowed and the
anomaly cancellation conditid26] simplifies to

Bn (/D =[H]o. (41)

The requirements on the manifoldthus become less restringent, and one can verify that
the following examples satisfy all our needs. The two-dimensional real projective space
RP? and the Klein surfack& 2 have nontrivial torsion given by

HYRP?, Z2) = 75, HYK?, 2) =7 & Z,. (42)
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The absence of supersymmetry in our construction (se&aisiion § allows us to consider
these possibilities as valid for the physical realisatio€df(I", 6) in terms of strings and
branes.

8. BPS-like spectra ing >1 from the Narasimhan—Seshadri theorem

In ¢ = 1, Morita equivalence of non-commutative gauge theories is reflected in the
T-duality of superstring theof85]. If we were to follow the reasoning appliedgn= 1[20],
we would now have to identify the dual tessellatiof{H). The latter would parameterise the
endomorphisms En8yy of the moduleEny. However,T*(H) must be a quantum space,
sinceI” is non-abelian. Moreover, ig > 1 there is no T-duality, and compactification
breaks all supersymmetfg3]. Hence, unlike ing = 1, there are no supersymmetric BPS
spectra ing > 1. This notwithstanding, the breakdown of supersymmetry does not prevent
the existence of stable, non-BPS states in M-th¢a30].

We will therefore follow an alternative route. We will prove the existence of constant-
curvature connections on the projective modllgs. We will see that, asip = 1,ing > 1
there exists a moduli space of such connections. Even though there is no supersymmetry,
one can take such connections as defininggthe1 analogues of BPS states on the torus,
since the latter were also characterised as having constant-curvatgre. Irthe stability
of such states was a consequence of supersymmetry. In the absence of supersymmetry,
however, the stability of these states deserves a separate study.

8.1. Constant-curvature connections BRym

The finite-dimensional spa@g\'M) in Eq. (23)is the fibre of a stable holomorphic bundle
overX. Let us assume that the double-scaling liMit— —oco, N — oo respects stability.
In other words, we assume that this limit can be taken in such a way #ikit) becomes
the fibre of an (infinite-dimensional) stable holomorphic bundle aveiThen a suitable
infinite-dimensional generalisation of Donaldson’s version of the Narasimhan—Seshadri
theorem establishes the existence of a metric conne¢isuch that the constant-curvature
condition(16)

Fp = —27i <% — 9},) wl (43)

holds. Abovew equals the Poincaré 2-form d dz/(Im z)? onH, andl denotes the identity
on Enm-

A remark is in order. There is a formal analogy between(BpandEg. (43) However,
contrary to the non-commutative torus, our non-commutafiealgebraC™ (I", §) and
its projective modules cannot be obtained from the representation theory of the Heisenberg
algebra. In fact we have followed a route different from that of the non-commutative torus
[20]. In g = 1 one first constructs a derivatidnof the C*-algebra. Next one uses
in order to define a connectiovi. Finally, V is used, as irEq. (3) in order to impose
the constant-curvature condition. gn> 1 we have bypassed this procedure because the
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constant-curvature conditiof@3) is no longer a Heisenberg algebra. Without defining a
derivations of C* (I, #), the Narasimhan—Seshadri theorem directly allows us to construct
the desired connections on the projective modlgs.

8.2. Moduli space of constant-curvature connections

The previous construction relied on the notion of stability for holomorphic vector bundles
overX. Aswe have seen, stability is required in order to have constant-curvature connections
or, in physical terms, BPS-like states. There is one more reason to require stabglity. In
there exists a moduli space of BPS states. Does a moduli space of BPS-like states exist in
g>17?

Topological vector bundles oveX are classified, up to isomorphism, by the raxk
and the degre@/. However, the classification dfolomorphicvector bundles involves
continuous parameters, and so we have a moduli space of holomorphic vector bundles over
X Fromthe above it follows that this moduli space coincides with that of constant-curvature
connections. The latter define the higher-genus analogue of BPS states. So-thke
analogues of BPS states are parameterised by the points of the moduli space of holomorphic
vector bundles. It turns out that the latter space in general is not Hausdorff, but the condition
of stability suffices to ensure a good moduli space. The precise statement is as f8aws
fix the dataX, N and M, the latter two coprime. Then there exists a complex smooth,
connected and compact moduli spatbé\fh),l of equivalence classes of rank degreeM,
stable holomorphic vector bundles ovEr with dimensionN?(g — 1) + 1. The moduli

spaceA/lf\,g,\),I depends only on the residue class\WbimoduloN.

9. Conclusions and outlook

In this paper, we have established an interesting link between non-commutative ge-
ometry and the Sen-Witten construction of non-BPS branes, by explicitly constructing a
non-commutativeC ™ -algebraC™ (I", 9) that generalises tg > 1 what the non-commuta-
tive torus does ig = 1. The mathematical definition 6 (I, §) was presented if18]; in
this paper it has been given a physical interpretation in terms of the wrapping-bfé&hes
on a Riemann surfacE in g > 1, with a background-field turned on. The latter deforms
the commutativeC ™ -algebra of functions to a non-commutatigé’-algebra that we have
succeeded in identifying. Finally, we have constructed a family of projective modules over
C™(I', 6) and proved the existence of constant-curvature connections on them.

In g = 1, Morita equivalence led to a whole Z(Z) orbit of Morita-equivalent non-
commutative tor[20]. This was due to the abelian property of the fundamental group of the
torus, which allowed for an easy identification of the commutant. However, the fact that the
Fuchsian group uniformising a Riemann surfacg i 1 is non-abelian implies that there
exists no Morita-group orbit af * (1", §) algebras that are Morita-equivalent@d (I, 9).

This notwithstanding, we have succeeded in identifyingghe 1 analogues of super-
symmetric BPS states on the non-commutative torus, thanks to Donaldson’s description of
stable vector bundles over Riemann surfaces.
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An important physical question to address in this context is the stability of the BPS-like
states constructed here. It would be very interesting to relate the mathematical property
of stability of holomorphic vector bundles with the physical property of being a stable,
non-BPS state. Mathematically, one would like to compute the topological numbers and the
Chern character for the projectic&” -modulesEnxy. We hope to report on these issues in
the future.
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